Condensation for the Approximate Nearest-Neighbor Rule

Alejandro Flores-Velazco & David Mount

○ afloresv@cs.umd.edu

e mount@cs.umd.edu

University of Maryland Department of Computer Science

Consider the problem of **Nearest-Neighbor Condensation**

Consider a training set **P** of labeled points from a metric space (\mathcal{X}, d) , to be used by the NN rule to classify new query points. The **NN condensation** problem deals with replacing the training set **P** with a significantly smaller subset without affecting the classification accuracy under the NN rule.

The notion of consistency is defined on *exact* NN queries. What if we consider an *approximate* version of this? We propose the α -RSS algorithm to select such subsets.

Preliminaries

An *enemy* of a point $p \in P$ is any point in P of a different class. According to the metric d, the *nearest enemy* of p is denoted as NE(p) and its *NE distance* as $d_{ne}(p)$.

Query point

A parameterized algorithm for NN condensation α - Relaxed Selective Subset

Input: initial training set P, and value $\alpha \ge 0$ **Output:** condensed training set α -RSS \subseteq P

- Training Set
- NN Condensation

Drawbacks!

The goal of NN *condensation* is to find a subset of **P** s.t. under the NN rule, every point in **P** is correctly classified. Such condensed set is called a **consistent** subset of **P**.

- 1 Let $\{p_i\}_{i=1}^n$ be the points of P sorted in increasing order of NE distance $d_{ne}(p_i)$ 2 α -RSS $\leftarrow \emptyset$
- \mathbf{s} Foreach $p_i \in \mathsf{P}$ where $i = 1 \dots n$ do
 - If $\forall r \in \alpha$ -RSS, $(1 + \alpha) \cdot \mathsf{d}(p_i, r) \ge \mathsf{d}_{ne}(p_i)$ then

 ${\scriptstyle\rm 6}$ Return $\alpha{\rm -RSS}$

4

5

- The α -RSS algorithm computes a consistent subset of P in $\mathcal{O}(n^2)$ worst-case time, and it is order independent.
- Order independence means the resulting subset is not determined by the order in which points are considered by the algorithm.
- Every point in **P** is correctly classified by α -ANN queries on α -RSS
- **0-RSS** equals **RSS** and ∞-**RSS** equals **P**.

Results \cdot Guarantees on the...

Results · Upper-bounds for... The size of α -RSS

Classification Accuracy of α -RSS

The **chromatic density** $\delta(q)$ of a query point $q \in \mathcal{X}$ is defined as

$$\delta(q,\mathsf{P}) = \frac{\mathsf{d}_{\mathrm{ne}}(q,\mathsf{P})}{\mathsf{d}_{\mathrm{nn}}(q,\mathsf{P})} - 1$$

Where $d_{nn}(q, P)$ is the NN distance of q.

Theorem Consider two parameters $\varepsilon_1 \ge \varepsilon_2 > 0$ both upper bounded by some constant, and set $\alpha = \Omega(1/(\varepsilon_1 - \varepsilon_2))$. Now, if a query point $q \in \mathcal{X}$ has $\delta(q, \mathsf{P}) > \varepsilon_1$ then $\delta(q, \alpha\text{-RSS}) > \varepsilon_2$. Let Δ be the **spread** of **P** (i.e., the ratio between the *largest* and *smallest* pairwise distances in **P**) and κ the **number of NE** points in **P**.

Theorem

Consider (\mathcal{X}, d) to be a **doubling space** with *doubling dimension* $ddim(\mathcal{X})$, then:

$$|\alpha - \mathsf{RSS}| = \mathcal{O}\left(\kappa \, \alpha^{\mathsf{ddim}(\mathcal{X}) + 1} \, \log \Delta\right)$$

Theorem

The subset of **P** selected by $(2/\varepsilon)$ -**RSS** is a weak ε -coreset for the chromatic nearest-neighbor of **P** on query points $q \in \mathcal{X}$ where $\delta(q, \mathsf{P}) > \varepsilon$.

Sufficient conditions for correct classification after NN condensation using α -RSS.

Theorem

Consider $(\mathcal{X}, \mathsf{d})$ to be the **Euclidean space**, s.t. $\mathsf{P} \subset \mathbb{R}^d$, then:

 $|\alpha - \mathsf{RSS}| = \mathcal{O}\left(\kappa \, \alpha^{d-1} \log \Delta\right)$

